首页> 外文OA文献 >Model-Based Evaluation of Signal-to-Clutter Ratio for Landmine Detection Using Ground-Penetrating Radar
【2h】

Model-Based Evaluation of Signal-to-Clutter Ratio for Landmine Detection Using Ground-Penetrating Radar

机译:基于模型的地面探测雷达地雷探测信杂比评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A regression model is developed in order to estimatein real time the signal-to-clutter ratio (SCR) for landmine detection using ground-penetrating radar. Artificial neural networks are employed in order to express SCR with respect to the soil’s properties, the depth of the target, and the central frequency of the pulse. The SCR is synthetically evaluated for a wide range of diverse and controlled scenarios using the finite-difference time-domain method. Fractals are used to describe the geometry of the soil’s heterogeneities as well as the roughness of the surface. The dispersive dielectric properties of the soil are expressed with respect to traditionally used soil parameters, namely, sand fraction, clay fraction, water fraction, bulk density, and particle density. Through this approach, a coherent and uniformly distributed training set is created. The overall performance of the resulting nonlinear function is evaluated using scenarios which are not included in the training process. The calculated and the predicted SCR are in good agreement, indicating the validity and the generalization capabilities of the suggested framework.
机译:开发了一个回归模型,以便实时估计使用探地雷达探测地雷的信杂比(SCR)。使用人工神经网络来表达关于土壤特性,目标深度和脉冲中心频率的SCR。使用有限差分时域方法,对SCR进行了多种多样且可控方案的综合评估。分形用来描述土壤异质性的几何形状以及表面的粗糙度。土壤的分散介电特性是相对于传统使用的土壤参数表示的,即沙分数,粘土分数,水分数,堆积密度和颗粒密度。通过这种方法,创建了一个连贯且均匀分布的训练集。使用训练过程中未包括的方案评估所得非线性函数的整体性能。计算的和预测的SCR吻合良好,表明所建议框架的有效性和泛化能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号